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I t  has been shown [1 -3 ]  that  the  discharge buildup t i m e  ~- for in i -  
t i a t ion  by s ingle  e lectrons subs tan t ia l ly  exceeds  the t i m e  expected  

from the o n e - a v a l a n c h e  s t reamer  mechan i sm in the case of gaps about 

1 m m  long breaking  down in 10 -9 sec or so. This ind ica tes  that  the 

m e c h a n i s m  involves  many  ava lanches .  If the discharge is i n i t i a t ed  by  

m a n y  electrons (104), the current rise is due to a v a l a n c h e  m u l t i p l i c a -  
t ion of i n i t i a t i ng  e lect rons  [4].  Then r equals the t i m e f o r  an ava l anche  

to build up to about  108 electrons [5].  
Li t t le  is known about  e lec t ron  m u l t i p l i c a t i o n  in one -e lec t ron  in i -  

t i a t ion ,  excep t  tha t  a diffuse glow occurs throughout the gap  during the 

i n i t i a l  buildup,  together  with narrow channels  of low luminos i ty  [6] ,  

whi l e  the s tage of rapid current r ise can  be ascribed to ava l anche  mul -  
t i p l i ca t i on  of secondary electrons [4].  Here we consider e lec t ron  m u l -  
t i p l i c a t i o n  in the  p r imary  process, and also the mechan i sm of secondary-  

e lec t ron  ex t rac t ion  in  one -e l ec t ron  in i t i a t i on  in strong fields.  

1. Electron spread in  an ava lanche .  An e lec t ron  appear ing  a t  the 

cathode leads to product ion of an e lec t ron  ava lanche .  I f  the f ie ld  is 

strong, m a n y  electrons are formed in the a v a l a n c h e  as i t  advances  a 

d is tance  much  less than the gap width. The f ie ld  produced by the e l e c -  

trons and ions begins to in f luence  the behavior  of the ava lanche .  The 

ion f ie ld  retards the t a i l  of the e lec t ron  ava lanche ,  whi le  t h e e l e c t r o n  

f ie ld  wi l l  a c c e l e r a t e  the electrons at  the head,  i . e . ,  the electrons be -  

gin to spread out. This effect  appears  even  during the  exponen t i a l  growth 
of the ava lanche .  

The  e lec t ron  densi ty  n e and ion densi ty n~ are  as follows in a cy -  

l i nd r i ca l  coord ina te  system r, z :  

he* = @"hrd-S exp {aoV t - -  [r~-}- (z --  v_t) ~] re~-2}, (I. I) 

hi* = O~oV_ f ne* (t') dt', rrl F ~-N. (1.2) 
o 

Here r d is the diffusion radius,  D is diffusion coef f ic ien t ,  a0 is the 

coef f ic ien t  of co l l i s iona l  ion iza t ion ,  and v_ is e lec t ron  drift  ve loc i ty .  

The  fol lowing are  [7] the e lec t ron  and ion f ields in  an ava l anche  

as functions of z: 

co  

Ed = -  EoM (y), e ?  = ~o~~ f e - aXM( x idx ,  
71 

E o _ _ q . e ~ p ( ~ o v _ t ) ,  y~z--v____~t, ~ = a o r a ,  
4~Ieord 2 r d 

Mty)" " =  erf~_7 (y) ~2 exp y(--Y"~) , (1.3) 

in which qe  is e lec t ron  charge.  

We n o r m a l i z e  the  expressions for the  f ie lds  and space -cha rge  den-  
s i t ies:  

rte - -  he* = , ff'e ~ Eez 
n-~[~ra -3 exp (nov t) E'~"c ' 

h i - -  hi* _ _  , Ei .~.  E (  (1.4) 
~-V'r d "-3 exp (eov t) --E-'~o " 

Figure 1 shows n e, n i ,  g e,  and E i as functions of (z - -v  t ) / r  d. 
To the r ight  of the point  where E e = E i we have  E e > E i .  The  f ie ld  

E e + E i is added to the ex te rna l  f ie ld  and wi l l  tend to de tach  electrons 

from the head.  The  sum f ie ld  is reduced to the le f t  of E e = E i and the 
e lect rons  are  re tarded.  Consider  the  number  of e lect rons  in  a f ie ld  ex-  

ceed ing  the  ex te rna l  f ie ld ,  for which we de t e rmine  the surface at  which 

E e + E i = 0 and take  the in tegra l  over the  ent i re  vo inme  in  the d i rec -  

t ion of increas ing  r an z. For app rox ima te  purposes we restr ict  consider-  

a t ion  to de t e rmina t ion  of the surface a t  which ~ e  pro jec t ion  of E e + E i 

on the  z - a x i s  is zero.  
We assume the dis tr ibut ion of n i and n e to be spher ica l ly  s y m m e -  

t r i ca l .  The center  of densi ty  for the ions l i e s a t  y = --~, where B i s d e -  

f ined by  

E~ (-- ~, ~ ) = o .  

Then for the c r i t i c a l  surface whose coordinates  are  p(y) we have  

Y + ~  
y p~ 

P - -  r 
-I F~§ ~ 

N u m e r i c a l  solut ion of (1.5) for a = l and 2 shows tha t  p(y) may  be  

approx imated  by a parabola :  

p = 2 . 4 ( y -  b) ~ (1.6) 

in wMch b = 0.495 for a = 1 and b = 0.645 for a = 2. 

The proportion of e lectrons within the paraboloid  is 

co  r ( z )  

N(1) = exp (--aoV t) f i ne2~rdrdz, 
go i~ 

where z0 is deduced from (1.6) with p = 0 and r(z) from (1.6) with the 

subst i tut ion 

p =  r / rd ,  y ~ - ( z - - v  t)/r d. 

The N (1) for a = i and 2 are,  respec t ive ly ,  0.18 and 0.18. 

The number  N of e lect rons  in the a v a l a n c h e  increases  as t i m e  pas- 

ses, whale a decreases  and r d increases .  Ca lcu la t ions  [ 7 - 9 ]  w e r e m a d r  
for a = a r  d a t  p = 760 m m  Hg and E/p = 150 V / c m - m m  Hg in order to 

e s t i m a t e  N(D. As a increased from 0.7a0 to 0.98a0 there  was about  a 

10% increase  in  a ,  and Fig. 1 shows tha t  this leads to increase  in  N(t). 

This resul t  agrees  wi th  measurement s  of a v a l a n c h e  radius in  vapors of 

-~Y 0 ~8 /6 

Fig. 1. Norma l i zed  ne,  n i ,  Ee, and 
E I a t  the z - a x i s  near  the center  of the 

e lec t ron  cloud.  
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organin l iquids  [10] ,  but these data  i nd i ca t e  tha t  the ava l anche  radius 

is g rea te r  than  r d for N _> 5 �9 107 on account  of Coulomb repulsion be-  

tween  the electrons.  This reduces E e and correspondingly reduces the 

e lec t ron  spread. 

This means  tha t  more  than  10% of the electrons wi l l  be mov ing  

with a v e l o c i t y  exceed ing  v_ even  at  the start  of re tardat ion of the av-  

a l a n c h e  by  E i ,  wh i l e  the rest w i l l  move  a t  less than  this ve loc i ty .  

2.  Ava l anche  eha im .  When E i becomes  comparab le  with the ex-  

t e rna l  f ie ld ,  the e lec t ron  head becomes  de tached  from the a v a l a n c h e  

and starts to form a new ava lanche ,  and so on. The  proportion of e l ec -  

trons los t  from the a v a l a n c h e  wi l l  be less than the N(t) der ived in  the 
previous sec t ion  because  only e l ec t rom whose speed considerably  exceeds  

v-  w i l l  be  lost. 
Consider  the t o t a l  number  of e lectrons in  such a chain .  We neg lec t  

over lap be tween the  e lec t ron  and ion clouds, and we also assume tha t  

the  a v a l a n c h e  broadens by free diffusion. If  we  also assume tha t  the av -  

a l anche  grows exponen t i a l ly  wi th  a = const, the  fol lowing is the num-  

ber of e lect rons  in the a v a l a n c h e  for one in i t i a t i ng  e l ec t ronwhen  Ei = E: 

N o ~  16aeOUTIL+ln No 
�9 - - ,  (2.1) q #  

in which u T is the t he rma l  v e l o c i t y  of the electrons.  

Electrons de tached  from the head move  in the f ie ld  

E* = , ~ g  (k E 2> f) ,  

s ince the f ie ld  of the e lec t ron  cloud wil l  be superimposed on the ex- 
t e rna l  f ie ld  E. The number  of ava lanches  in  a path z is 

z/z~ = za/lnNo / N*, 

in which z k is a v a l a n c h e  length  and N* is the number of e lectrons 

e jec ted  from the ava lanche .  Then the to ta l  number  of e lectrons in such 

a cha in  is 

N1----- No z_ or N1 = t6~s~ . (2.2) 
zk qe 

The conduc t iv i ty  of an a v a l a n c h e  cha in  across the gap  (z = 5) is 

Nip . q  e6  "2. It is found [8,9] for ni t rogen a t  E /p  > 10 z V / c m - m m  Hg 
that  u T ~ 0.3(E/p) ~ i . e . ,  the  conductance  is ~ 2.~. 10-6(p6) -1 
o h m - 1  

Chains  of ava l anches  such as those described above  should t ake  the 

form of thin weakly  luminescen t  channels  a t  the s tage at  which there 

is s t i l l  no po ten t i a l  drop in the gap; such channels  would appear  t o h a v e  

been observed [6].  
In fac t ,  narrow channels  within about 10 "9 sec acqui red  a d iamete r  

of about 10 "z cm and crossed the gap in not more  than 10"Ssec for 6 = 

= 0.4 era ,  p = 46 m m  Hg, and E/p  = 1.43 �9 10 ~ V / c m - m m  Hg. 

An a v a l a n c h e  cha in  under such condit ions should have  a d i a m e t e r  

of about dl ~ 2 ~/6Dt and should br idge the gap in a t i m e  h ~ 6 /kvV- ,  
in which kv > 1 takes account  of the increase  in the  speed of the ava-  

l anche  cha in  r e l a t i v e  to v .  If the electrons are e jec ted  for E i = E we 

have  k v ~ 2. For n i t rogen [8,9] 

D ~ 2/~ uTp .  - ~ 3.104cm 2 sec-~, 

so we get  

dl ~ 3.10 - a c m  tr ~ t , 5 . t 0  ~ sec.  

These agree  with observed values  in order of magn i tude  [6].  

Secondary electrons are produced by photons from the pr imary  ava -  
lanches .  If we assume tha t  these photons are  emi t ted  by exci ted  mo le -  

cules with a m e a n  l i f e t i m e  r b, the t i m e  of discharge buildup should be 

of the order of r b, as is observed [3,12].  
The concept  of a v a l a n c h e  chains is confirmed by the presence of 

m a n y  channels  in  the f ina l  s tage  of breakdown. An ava l anche  chain  is 
of low conduc t iv i ty  and is quas i -neu t ra l ,  so the t i m e  of spark vo l t age  
drop re la ted  to a v a l a n c h e  e lect ron m u l t i p l i c a t i o n  should not be depen-  
dent  on the  number  of o r ig ina l  i n i t i a t i ng  electrons,  as is found [4 j .  

s 
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Fig. 2. Change in  pho toe lec t r i c  emiss ion from 
copper for 5 = 1 r am,  p = 760 m m  Hg, and U 

(kV) of: 1) 30, c l ean  e lect rodes ,  2) 30, af ter  

4000 sparks, 3) 1% c lean  electrodes,  spa rk i l -  

inmina t ion ,  4) 1% af ter  4000 sparks, s p a r k i l -  

lumina t ion .  

0 / "-'7 
fg t, nsec 

Fig. 3. Field emiss ion from copper with 5 = 1 m m  

at  U = 30 kV and p (ram Hg) of: 1) 20, c l e a n e l e c -  

trodes, 2 ) 7 6 0 ,  c l ean  e lect rodes ,  3 ) 2 0 ,  a f te r4000 
sparks, 4) 760, af ter  4000 sparks. 

3. Secondary p toce~es .  The distr ibut ion in  the discharge de lay  was 
e x a m i n e d  in  re la t ion  to the surface s ta te  of the ca thode  in  order to in-  

ves t iga t e  the role  of the ca thode  in the secondary process. The  method. 

of measu remen t  was as previously described [3].  We plot ted ~c(t) = 
= l ln  nt/n0],  f ( t j )  = 1 (n t i s t he  number o fd i scha rgeswi th  a delay  of t or 

more ,  and no is the to ta l  number  of discharges),  i f  t l  >> 10 -9 sen, the 

f ( t )  curves b e c o m e  straight  l ines.  Copper and tungsten cathodes gave  a 

marked  dependence  of t l  on the number  of previous discharges.  Numer-  

ous measurements  of tl showed that  t increases  with the number of sparks. 

The effect  i s s l i g h t  for the first few hundred sparks, but i t  becomes 

marked  for n > 10 ~. These effects are  not observed for a luminum ca th -  

odes [13]. 

There  are two reasons for increase  in  tl:  1) the pho toe lec t r i c  emis -  
sion from the ca thode  m a y  de ter iora te ,  which reduces the effects of 

secondary processes, 2) if  the discharges reduce the f ie ld  emiss ion from 

the cathode,  this wi l l  reduce the e lec t ron  current i0 that  in i t i a tes  the 

breakdown and thus wi l l  increase  tl, because  q cc 1/i0 for E, p, and 6 

constant .  
The  fol lowing tests were performed to establish which of these two 

effects governs tKn0). With E = 3 �9 10 ~ V / c m ,  8 = 0.1 cm,  p = 760 m m  

Hg (air),  and c lean  copper e lectrodes,  we measured the de lay  and drew 

up f ( t )  curves. The  same  electrodes were then used with the same  p 

and 6 at  g = 10SV/cm with i l l u m i n a t i o n  from an aux i l i a ry  spark via  a 
quartz  window (curves i and 3 in Fig. 2). Then4000 sparks werepassed,  
fol lowed by recordings with and without  the spark i l l umina t i on  (curves 

2 and 4 in Fig. 2). 
Curves 1 and 2 are to be compared with 3 and 4, which charac ter -  

i z e t h e p h o t o e l e c t r i c e m i s s i o n .  Line 4 is much  less steep than l ine  3, 
which shows that  the cathode emiss iv i ty  is much  reduced by 4000 sparks. 

The f ( t )  for low pressures s imi l a r l y  serve to cha rac t e r i ze  the change in 
f ie ld  emiss ion in  response to a number  of discharges.  

I t  has been found [8] that  for 6 --<- 0.1 cm at  a tmospher ic  pressure 

there is a cer ta in  p robab i l i ty  P < 1 of e lec t ron  emission from the cath-  
ode even at  high overvol tages .  The rat io  g /p  had to be increased to 
produce P ~ 1. We therefore recorded two distributions a t E  = 3 �9 105 

V / c m  for c l ean  copper e lect rodes ,  one at  20 m m  Hg and the other a t  
760 m m  Hg (curves 1 and 2 in Fig. 3). The curves were aga in  recorded 
after  4000 sparks (curves 3 and 4). As P = 1 impl ies  tha t  i0 ~ q e / t l  for 

the e lec t ron  current from the cathode that  in i t i a t e s  breakdown, the 
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slopes of the f(t) curves for 20 mm Hg (1 and 8 in Fig. 8) characterize 
i0 at the start and end. The sparking tends to increase the field emis- 

sion [14]. 
Photoelectric emission from the cathode is thus an important secon- 

dary process in the production of discharges in the nanosecond range. 
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